
Mixed-Signal Blockset™
User's Guide

R2019a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Mixed-Signal Blockset™ User's Guide
© COPYRIGHT 2019 by MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History
March 2019 Online only New for Version 1.0 (Release 2019a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

PLL Featured Examples
1

Phase Noise at PLL Output . 1-2

ADC Featured Examples
2

Effect of Metastability Impairment in Flash ADC 2-2

Mixing Analog and Digital Signals Featured Examples
3

Digital Timing using Solutions to Ordinary Differential
Equations . 3-2

Digital Timing Using Fixed Step Sampling 3-7

Logic Timing Simulation . 3-12

PLL Block Level Examples
4

Measuring VCO Phase Noise to Compare with Target Profile
. 4-2

iii

Contents

Finding Voltage Sensitivity and Quiescent Frequency of VCO
. 4-4

Frequency Division Using Single Modulus Prescaler 4-6

Frequency Division Using Dual Modulus Prescaler 4-8

Frequency Division Using Fractional Clock Divider with
Accumulator . 4-10

Frequency Division Using Fractional Clock Divider with DSM
. 4-12

iv Contents

PLL Featured Examples

1

Phase Noise at PLL Output
This example shows how to measure and analyze the phase noise at the output of a phase-
locked loop (PLL) using the PLL testbench.

The five sections of this example demonstrate three phase noise effects, individually and
collectively:

1 Numerical noise baseline
2 The effect of reference phase noise only
3 The effect of VCO phase noise only
4 The effect of VCO phase noise subsampling by the feedback prescaler
5 The combined effect of all three phase noise sources.

The PLL Testbench generates a reference signal and measures the phase noise at the PLL
output.

The reference phase modulation in this model is used to contrast the response to
reference phase variation with the response to VCO phase noise. The PLL Testbench does
not currently include a specfication of reference phase noise; however the user can insert
reference phase noise between the PLL Testbench output and the PLL reference input, as
is done in this example.

The Resample blocks at the inputs of two of the spectrum analyzers convert the variable
step discrete sampled signals to the fixed step discrete sampled signals the spectrum
analyzer requires. The Resample block is a block inside the Slew Rate block found in the
Mixed Signal Blockset Utilities library. It is a low pass filter whose impulse response is
described by a closed form equation. It is therefore able to calculate an output sample
value for any sample time step, independent of the input sample time step.

The model uses a reference frequency fref of 30 MHz and a feedback divider ratio N of
70 for all but one section. The output frequency fout is N*x*fref, or 2.1 GHz for those
sections.

% Make sure genPrbs7 has been run.
if ~exist('prbs7', 'var') || ~exist('prbs7time', 'var')
 [prbs7, prbs7time] = genPrbs7(30e6,500e3,-110);
end
% Make sure PllPhaseNoiseExample.slx has been loaded.
open_system('PllPhaseNoiseExample.slx');

1 PLL Featured Examples

1-2

Baseline

This section measures the limitations of the example model due to numerical noise or
other inaccuracies. All of the sources of phase noise are disabled and the phase noise is
measured to establish the baseline phase noise level. When sources of phase noise are
enabled in subsequent sections, the effect of the phase noise source is the difference
between the measured phase noise and the baseline phase noise level measured in this
section.

• VCO free-run frequency: N*x*fref
• Feedback prescaler ratio: N
• VCO phase noise: Disabled
• Reference modulation: Through path selected

The target phase noise shown in the PLL Testbench phase noise plot is a PLL Testbench
parameter. In this example, it is not actually a performance target, but rather was set
equal to the VCO phase noise for comparison to the phase noise at the output of the PLL.

% Configure the model
configurePhaseNoiseExample('PllPhaseNoiseExample', 2.1e9, 70, 'off', '1');
% Run the simulation
sim('PllPhaseNoiseExample.slx');
% Plot the PLL Testbench phase noise analysis
plotPhaseNoiseAnalysis();

 Phase Noise at PLL Output

1-3

1 PLL Featured Examples

1-4

 Phase Noise at PLL Output

1-5

1 PLL Featured Examples

1-6

Reference Source Phase Modulation

In this section, measure the amplification of phase modulation at the reference input of
the PLL.

Unlike the very low level, random reference phase noise that is typical of most practical
applications, this example uses PRBS7 reference phase modulation. This phase
modulation produces discrete spectral components that contrast with the smooth spectral
density of the VCO phase noise and in-band phase noise generated internal to the PLL.
Such a reference phase modulatioon might be used in a spread spectrum application,
though usually at a much higher modulation amplitude.

• VCO free-run frequency: N*x*fref

 Phase Noise at PLL Output

1-7

• Feedback prescaler ratio: N
• VCO phase noise: Disabled
• Reference modulation: Phase modulated reference selected

The reference input spectrum has many closely spaced spectral components of nearly the
same amplitude across the entire spectrum.

The PLL output spectrum with reference phase modulation includes spectral components
at the same frequency offsets as for the modulated reference input, but at very different
levels. The spectral components within the PLL loop bandwidth are amplified by the
feedback prescaler divider ratio. Beyond the loop bandwidth, the spectral components fall
off much more rapidly than the spectral components at the input, due to the filtering of
the PLL control loop.

The spectrum at the output of the loop filter includes spectral components at the same
frequency offsets as for the modulated reference input, but at levels that are very
different from either the reference input or the PLL output. The loop filter output is
integrated by the VCO; and in order to produce spectral components that are nearly
coonstant within the PLL control loop bandwidth, the level of the spectral components at
the loop filter output must be proportional to the frequency offset.

Optional: In the mask for the PLL, go to the loop filter tab and change the loop
bandwidth (e.g., reduce the loop bandwidth by a factor of the), then re-run this section.
Note the effect of the PLL control loop bandwidth on the spectrum at the PLL output.

% Configure the model.
configurePhaseNoiseExample('PllPhaseNoiseExample', 2.1e9, 70, 'off', '0');
% Run the simulation
sim('PllPhaseNoiseExample.slx');
% Plot the PLL Testbench phase noise analysis
plotPhaseNoiseAnalysis();

1 PLL Featured Examples

1-8

 Phase Noise at PLL Output

1-9

1 PLL Featured Examples

1-10

 Phase Noise at PLL Output

1-11

VCO Phase Noise

In this section, observe the direct output of VCO phase noise as filtered by the PLL loop
response. This is done by selecting the unmodulated reference, setting the feedback
prescaler divider ratio to one, setting the VCO free running frequency equal to the
reference frequency, and enabling the VCO phase noise. The loop filter design is
automatically updated so you can compare the results with other feedback prescaler
ratios.

• VCO free-run frequency: fref
• Feedback prescaler ratio: 1
• VCO phase noise: Enabled

1 PLL Featured Examples

1-12

• Reference modulation: Through path selected

In both the PLL output spectrum and the PLL Testbench phase noise analysis, the phase
noise sidebands nearest the main spectral component are significantly reduced. The
sidebands beyond the loop bandwidth decay more slowly.

In the loop filter output spectrum, the spectral density at small frequency offsets is quite
significant. The loop filter output cancels out a significant portion of the VCO phase noise
close to the main output signal.

Optional: Run with different loop bandwidths, phase margins or filter orders and the the
effect on the PLL output spectrum.

% Configure the model.
configurePhaseNoiseExample('PllPhaseNoiseExample', 30e6, 1, 'on', '1');
% Run the simulation
sim('PllPhaseNoiseExample.slx');
% Plot the PLL Testbench phase noise analysis
plotPhaseNoiseAnalysis();

 Phase Noise at PLL Output

1-13

1 PLL Featured Examples

1-14

 Phase Noise at PLL Output

1-15

1 PLL Featured Examples

1-16

In-band Phase Noise

In this section, generate an in-band noise floor through the feedback prescaler. The PLL
control loop filters the newly introduced phase noise. In a PLL with feedback prescaler
ratio greater than one, the phase noise at the output of the feedback prescaler is a
subsampled version of the VCO phase noise. The phase noise that the PLL control loop is
responding to is therefore not a perfect replica of the VCO phase noise, resulting in
incomplete suppression of the VCO phase noise. The resulting tracking error is commonly
referred to as an in-band noise floor.

For this section, the feedback divider ratio is set to 70, resulting in a PLL output
frequency of 2.1 GHz. The unmodulated reference is chosen and the VCO phase noise is
enabled.

 Phase Noise at PLL Output

1-17

• VCO free-run frequency: N*x*fref
• Feedback prescaler ratio: N
• VCO phase noise: Enabled
• Reference modulation: Through path selected

In contrast to the case with unity feedback prescaler ratio, the PLL output phase noise
sidebands nearest the main spectral component are essentially constant. This is what is
referred to as an "in-band noise floor".

In the loop filter output spectrum, the spectral density at small frequency offsets is
significant; however in this case the cancellation of the close-in VCO phase noise by the
loop filter output is not as effective as in the case of a divider ration equal to one.

Optional: Experiment with other divider ratios and note how the in-band noise floor
changes.

Optional: Run width different loop bandwidths, phase margins or filter orders and note
the effect on the in-band noise floor.

% Configure the model.
configurePhaseNoiseExample('PllPhaseNoiseExample', 2.1e9, 70, 'on', '1');
% Run the simulation
sim('PllPhaseNoiseExample.slx');
% Plot the PLL Testbench phase noise analysis
plotPhaseNoiseAnalysis();

1 PLL Featured Examples

1-18

 Phase Noise at PLL Output

1-19

1 PLL Featured Examples

1-20

 Phase Noise at PLL Output

1-21

Total Phase Noise

In this section, observe the total effect of all phase noise components at the PLL output.

• VCO free-run frequency: N*x*fref
• Feedback prescaler ratio: N
• VCO phase noise: Enabled
• Reference modulation: Phase modulated reference selected

% Configure the model.
configurePhaseNoiseExample('PllPhaseNoiseExample', 2.1e9, 70, 'on', '0');
% Run the simulation
sim('PllPhaseNoiseExample.slx');

1 PLL Featured Examples

1-22

% Plot the PLL Testbench phase noise analysis
plotPhaseNoiseAnalysis();

 Phase Noise at PLL Output

1-23

1 PLL Featured Examples

1-24

 Phase Noise at PLL Output

1-25

1 PLL Featured Examples

1-26

ADC Featured Examples

2

Effect of Metastability Impairment in Flash ADC
This example shows how to customize a flash ADC by adding the metastability probability
as an impairment and how to measure the said impairment. This is to validate our
impairment implementation. The example also shows the effect of metastability on the
dynamic performance (AC analysis) of the flash ADC. When the digital output from a
comparator is ambiguous (neither '1' nor '0') , the output is defined as metastable. The
ambiguous output is expressed as NaN. This example model uses a MATLAB function
block to add the metastability impairment to a flash ADC architecture. Another subsystem
reports the metastability probability on the fly.

Customize the flash ADC

Extract the inner structure of the flash ADC to add customized impairment. Add a flash
ADC block from the Mixed Signal Blockset™ library to a Simulink® canvas. Look under
the mask to find the flat structure of the ADC. Copy paste the complete structure to
another new blank canvas.

For this example, we delete the 'Clock Generator' block as it is not used to provide the
start conversion clock. An external stimuli block is used for that purpose. Barring the
clock generator block, flash ADC consists of 2 major components:

• Flash ADC comparators: The flash ADC uses 2^NBits comparators in parallel. The
block itself is based on MATLAB code. Before simulation starts, they calculate the
individual reference voltages and store them in a vector. On every specified edge, the
input is compared to the references using MATLAB's ability to compare vectors. This
generates thermometer code in much the same way the real flash ADC does, without
the lag from (NBits) individual comparator blocks in the model. Various parameters of
its mask will be configured as follows

2 ADC Featured Examples

2-2

1 Number of bits: 10 (we will be creating the example for a 10-bit ADC)
2 Input range: [-1 1] (the default setting)
3 INL vector: 0 (we want to disable this impairment to see the real effect of

metastability)

• Fault Aware Ones Counter: This block is an impairment and the other major half of the
flash ADC architecture rolled into one. Real ADCs handle conversion from
thermometer to binary through logic circuits. This block just takes the sum-of-
elements of the vector. It then applies that sum to a lookup table to simulate missing
codes, otherwise known as bubbles. The various parameters for this block are like
flash ADC comparator block mentioned above. The only additional parameter is the
missing codes which is entered as an empty vector.

What we see from the image below is a top view of the flash ADC block on the left side
and its inner structure pasted on the top right side. Bottom right is the structure with
only the important components required for this example.

 Effect of Metastability Impairment in Flash ADC

2-3

Implement Metastability Probability as an Impairment to Flash ADC

To add metastability impairment we place a MATLAB function block soon after the flash
ADC comparators as shown in the figure below. This block sets thermometer code signals
to NaN with a probability specified in its mask using a uniform random number generator.
It resets them on the next relevant edge. MATLAB code behind the impairment block is as
follows:

% function y = metastability(u, Probability)
% mult = ones(size(u));
% mult(rand(size(u)) < Probability(1)) = NaN; % metastability = NaN
% y = u .* mult;
% end

2 ADC Featured Examples

2-4

As you can observe from the image above the mask of the impairment block requires one
parameter i.e. metastability probability that user wants to implement in the flash ADC
block.

Implement Measuring Metastability Probability

The idea behind measuring metastability impairment is very simplistic. We count the
number of NaNs encountered and divide that by the number of total comparator outputs
generated during the complete simulation. A simple Simulink implementation of
metastability probability measurement is shown below.

 Effect of Metastability Impairment in Flash ADC

2-5

The Inports are: * ADC output: This port takes in the output digital code generated by the
flash ADC. * Ready signal: This port takes in the ready signal signifying the rate at which
the digital conversion is taking place. at each rising edge of the Ready signal digital code
gets generated.

Simulation for Metastability Measurement

Below is the model combining the customized flash ADC with its output connected to the
metastability probability measurement system. In the model we have a 10-bit flash ADC
with metastability probability of 1e-6 added. the stimuli block generates an analog signal
of 100Hz and a start conversion clock with a frequency of 100MHz (this will be ADC's
rate of operation). We have a dashboard scope which provides the behavior of the
probability number over time. There is a display block also to provide the current
probability being measured by the subsystem. One needs to run the simulation for a
longer period to see the probability number getting settled to the desired value (1e-6 in
this case)

NBits=10;
model1='flashAdc_metastability.slx';
open_system(model1);
sim(model1);

2 ADC Featured Examples

2-6

Effect of Metastability on Dynamic Performance of ADC

Here we observe the effect of metastability on the dynamic performance of ADCs. The
model shows two setup of flash ADC systems: One with metastability and the other
without it. We have a post processing block that takes in the impaired digital output and
converts the NaNs to a 0. This is because the digital output with NaNs can't be
recognized by a spectrum analyzer as valid signal for spectral analysis. We also hookup
ADC AC measurement block to observe various performance metrics like SNR, ENOB,
noise floor etc. The simulation results show the AC analysis brings significant drop in
performance for ADC with metastability as shown by the lower ENOB and higher noise
floor.

model2='flashAdc_metastability_Effect.slx';
open_system(model2);
sim(model2);

 Effect of Metastability Impairment in Flash ADC

2-7

2 ADC Featured Examples

2-8

 Effect of Metastability Impairment in Flash ADC

2-9

Mixing Analog and Digital Signals
Featured Examples

• “Digital Timing using Solutions to Ordinary Differential Equations” on page 3-2
• “Digital Timing Using Fixed Step Sampling” on page 3-7
• “Logic Timing Simulation” on page 3-12

3

Digital Timing using Solutions to Ordinary Differential
Equations

This example shows how to model a three stage ring oscillator using models defined by
ordinary differential equations (ODE).

This example is the third of three examples that use a three stage ring oscillator model to
explore the range of options for simulating the analog applications of digital circuits. The
delays in each stage determine the ring oscillator's output frquency, making the accurate
modeling of these delays essential to the the simulation of the circuit.

The first and second examples in the sequence contain background that will help you get
the most out of this example. You should read them first, in sequence, if you haven't
already done so.

This model uses blocks defined by ODEs, and depends on the services of an ODE solver.
For each stage, the zero crossing detection capabilities of a Compare To Constant block
are used to produce a saturated input to the inverter. The inverter output is converted
from Boolean to double to drive a Transfer Function block. The Transfer Function block
defines the shape of the inverter output transitions.

% Load the ODE-based model and update the model to display
% sample times.
open_system('OdeWaveform');
set_param(gcs,'SimulationCommand','update');

3 Mixing Analog and Digital Signals Featured Examples

3-2

Continuous Time Model Using Exponential Decay

In this section, use a single pole response to evaluate the ring oscillator output when the
inverter output is modeled as the response of an RC circuit.

For this section, the Transfer Function blocks are configured for a single pole response.
The pole for one of the logic stages is set to a slightly different value than for the other
two stages so that the model will enter the correct mode of oscillation.

The solver selection is set to auto, with a Relative Tolerance of 1e-9.

% Run the ODE-based model with single pole rise/fall response.
sim('OdeWaveform');

 Digital Timing using Solutions to Ordinary Differential Equations

3-3

Continuous Time Model with Nearly Constant Slew Rate

In this section, model the response of the ring oscillator stages using a continuous time
Transfer Function block with a fourth order Bessel-Thompson response to approximate a
constant slew rate response.

Note the slight rounding of the onset of the switching edges, similar to the waveforms
produced in the Digital Timing using Fixed Step Sampling example.

% Set the configuration for the fourth order Bessel-Thompson rise/fall
% response.
den = getBesselDenominator(3e9);
set_param('OdeWaveform/Transfer Fcn','Denominator',mat2str(den));
set_param('OdeWaveform/Transfer Fcn1','Denominator',mat2str(den));
den = getBesselDenominator(3.1e9);
set_param('OdeWaveform/Transfer Fcn2','Denominator',mat2str(den));
% Run the modified ODE-based model.
sim('OdeWaveform');

Warning: Undefined variable "autosar" or class
"autosar.api.Utils.initMessageStreamHandler".

3 Mixing Analog and Digital Signals Featured Examples

3-4

Continuous Time with Solver in auto Mode

In this section, change the solver configuration and observe the change in results.

Maintain the model configuration of the previous section but change the solver's Relative
Tolerance from 1e-9 to auto.

Observe both the change in period of oscillation and in wave shape.

For circuits which are adequately described by linear, time invariant models, the
combination of fixed step and variable step discrete sample times, as described in the
Combined Fixed Step and Digital Timing section may be the simplest way to get
reliable results. However, for circuits which must be modeled by a nonlinear or time-
varying model, the ODE-based solution is the only viable option. In such cases, you should
vary the maximum error tolerance, maximum step size or choice of solver in the solver
configuration dialog and compare the results to the behavior you expect.

% Change the solver's relative tolerance to 'auto'.
set_param('OdeWaveform','RelTol','auto');

 Digital Timing using Solutions to Ordinary Differential Equations

3-5

% Run the model with the auto solver setting.
sim('OdeWaveform');

Warning: Undefined variable "autosar" or class
"autosar.api.Utils.initMessageStreamHandler".

3 Mixing Analog and Digital Signals Featured Examples

3-6

Digital Timing Using Fixed Step Sampling
This example shows how to model a three stage ring oscillator using a combination of
fixed step and variable step discrete sample times.

This example is the second of three examples that use a three stage ring oscillator model
to explore the range of options for simulating the analog applications of digital circuits.
The delays in each stage determine the ring oscillator's output frquency, making the
accurate modeling of these delays essential to the the simulation of the circuit.

The first example in the sequence contains background that will help you get the most out
of this example. You should read it first, if you haven't already done so.

For each stage of the ring oscillator, the Logic Decision block converts the input into a
saturated variable step discrete signal and the Slew Rate block converts the output to an
analog fixed step discrete signal. Some delay in the Logic Decision block is unavoidable;
however most of the delay is introduced by the Slew Rate block.

The Logic Decision block generates a variable step discrete sample at its output in
response to any threshold crossing it detects at its input.

For a fixed step discrete input sample time, the threshold crossing time is determined by
linear interpolation between the two most recent samples. The output sample is delayed
by one sample because the block does not have access to the fixed in minor step services
of an ODE solver. In the modeling of a circuit, this delay must represent either the delay
of input stages in a multi-stage transistor circuit or RC transmission line routing delay.

For a fixed step input, the precision of the threshold crossing time reported by the Logic
Decision block depends on the ratio of the spectral content of the signal to the Nyquist
frequency defined by sample rate. For a sine wave at 0.25 times the Nyquist frequency
(8x oversampling), the maximum error in the reported threshold crossing time is 1% of a
sample interval. For 0.1 times the Nyquist frequency, the maximum error is 0.15% of a
sample interval. For applications requiring greater precision, such as evaluating low level
phase noise at the output of a PLL, an approach that depends only on variable step
sampling may produce more precise results.

For a variable step input, the output of the Logic Decision block is delayed by the
minimum delay parameter for the block.

The Slew Rate block implements a linear time invariant transfer function that can be
applied to either a variable step or fixed step input signal, producing a fixed step discrete

 Digital Timing Using Fixed Step Sampling

3-7

output signal with a sample time that was set by the Slew Rate block. The delay of the
Slew Rate block is a mixture of

• Constant delay such as might occur in a multi-stage transistor circuit or RC routing
delay

• Nearly constant slew rate such as would be typical of a saturated transistor driving a
capacitive load

• Exponential decay such as would be typical of an RC circuit

% Load the mixed analog/digital model and update the model to display
% sample times.
open_system('AnalogWaveform');
set_param(gcs,'SimulationCommand','update');

3 Mixing Analog and Digital Signals Featured Examples

3-8

Slew Rate Block in Default Sampling Mode

In this section, use the Default sampling mode of the Slew Rate block to model the
response of a circuit whose slew rate is nearly constant, such a saturated transistor
driving a capacitive load.

For this section, the Slew Rate blocks have been configured to their Default sampling
mode, which maximizes the portion of the delay due to nearly constant slew rate
(saturated transistor) and minimizes the delay due to constant delay or exponential decay.

The delay for one logic stage has been set to a slightly different value than for the other
stages so that the model will enter the correct mode of oscillation.

Since the model contains no differential equations, the solver is Variable Step Discrete.

Note in the response that the onset of the switching edges is slightly rounded. In a real
circuit, this would typically be due to the RC response of the routing.

% Run the mixed analog/digital model with default sample times
sim('AnalogWaveform');

 Digital Timing Using Fixed Step Sampling

3-9

Slew Rate Block in Advanced Sampling Mode

In this section, use the Advanced sampling mode of the Slew Rate block to model circuits
whose response is primarily a decaying exponential.

Choose the Advanced mode for the Slew Rate block sampling and set the Maximum
frequency of interest to a value that is high enough to make the delay of the Slew Rate
block due primarily to exponential decay. This choice also minimizes the delay of the
Logic Decision block.

Note in the response that the onset of the switching edges is relatively sharp.

% Configure the mixed analog/digital model to approximate single pole
% response.
% Slew Rate1
set_param('AnalogWaveform/Slew Rate1','DefaultOrAdvanced','Advanced');
set_param('AnalogWaveform/Slew Rate1','MaxFreqInterest','20e9');
set_param('AnalogWaveform/Slew Rate1','RisePropDelay','92e-12');
set_param('AnalogWaveform/Slew Rate1','RiseTime','15.5e-11');
% Slew Rate2
set_param('AnalogWaveform/Slew Rate2','DefaultOrAdvanced','Advanced');
set_param('AnalogWaveform/Slew Rate2','MaxFreqInterest','20e9');
set_param('AnalogWaveform/Slew Rate2','RisePropDelay','92e-12');
set_param('AnalogWaveform/Slew Rate2','RiseTime','15.5e-11');
% Slew Rate3
set_param('AnalogWaveform/Slew Rate3','DefaultOrAdvanced','Advanced');
set_param('AnalogWaveform/Slew Rate3','MaxFreqInterest','20e9');
set_param('AnalogWaveform/Slew Rate3','RisePropDelay','95e-12');
set_param('AnalogWaveform/Slew Rate3','RiseTime','16e-11');
% Update the diagram to show revised sample times in sample time legend.
set_param(gcs,'SimulationCommand','update');
% Run he mixed analog/digital model with emphasized one pole response
sim('AnalogWaveform');

Warning: Undefined variable "autosar" or class
"autosar.api.Utils.initMessageStreamHandler".

3 Mixing Analog and Digital Signals Featured Examples

3-10

 Digital Timing Using Fixed Step Sampling

3-11

Logic Timing Simulation
This example shows how to use the Variable Pulse Delay block from the Mixed Signal
Library to create accurate timing models of logic circuits.

This example is the first of three examples that use a three stage ring oscillator model to
explore the range of options for simulating the analog applications of digital circuits. The
delays in each stage determine the ring oscillator's output frquency, making the accurate
modeling of these delays essential to the the simulation of the circuit.

The second and third examples both show how to produce analog waveforms with
accurate shape and timing. You should study this example before studying the other two.

The delays in this model are introduced by the Variable Pulse Delay blocks from the
Mixed-Signal Blockset's Utilities library, with the delay defined by a separate input to the
block. The initial output values for the Variable Pulse Delay blocks are set to guarantee
oscillation. The initial output value for two of the blocks is set to the default value of zero
while the initial output for the third block is set to one.

The oscilloscope is configured to display the samples as a scatter graph, with no
rendering between samples. Different sample times make different assumptions about the
signal value between samples such as

• Zero Order Hold (ZOH). The signal value is assumed to equal the value of the most
recent sample.

• First Order Hold (FOH). The signal value is assumed to vary linearly from one sample
to the next.

• Nyquist limited. The signal is assumed to have zero spectral content above a
frequency equal to one half of a fixed sample rate.

• Taylor series. For each major sample step, an ODE solver produces a polynomial that
approximates the signal value over that time interval.

The oscilloscope block bases its rendering on these assumptions. You must focus on the
samples themselves and understand explicity the assumptions that different sample times
make.

The samples displayed on the oscilloscope show a single sample for each logic switching
event. These samples are generated by the Variable Pulse Delay blocks. Every time a
Variable Pulse Delay block receives a sample, it generates a new event at a time equal to
the sample time plus the value at the delay input port.

3 Mixing Analog and Digital Signals Featured Examples

3-12

As indicated by the sample time color coding, the output sample time for the inverters is
Fixed In Minor Step (FIM). This means that each inverter will produce an output sample
value for every major sample time in the model, regardless whether or not that sample
time is used at an input port of the gate.

This FIM behavior is typical of most logic blocks; however you should pay special
attention to sample time propagation in triggered subsystems such as D flip-flops. If the
trigger input uses a fixed step discrete sample time, then any input which is not
synchronous with that sample time may not be processed correctly. The triggered
subsystem can be forced to operate in FIM mode by triggering it with a variable step
discrete trigger such as would be produced by the Variable Pulse Delay block or the Logic
Decision block (also from the Mixed-Signal Blockset's Utilities library).

Since the model does not contain any differential equations, the solver is Variable Step
Discrete.

The Stage Delay is set to |100|ps, resulting in a half period of precisely |300|ps and a
period of |600|ps, as demonstrated in the simulation output.

% Load the logic timing model and update the model to display sample times.
open_system('LogicTiming');
set_param(gcs,'SimulationCommand','update');

 Logic Timing Simulation

3-13

% Run the logic timing model
sim('LogicTiming');

3 Mixing Analog and Digital Signals Featured Examples

3-14

 Logic Timing Simulation

3-15

PLL Block Level Examples

• “Measuring VCO Phase Noise to Compare with Target Profile” on page 4-2
• “Finding Voltage Sensitivity and Quiescent Frequency of VCO” on page 4-4
• “Frequency Division Using Single Modulus Prescaler” on page 4-6
• “Frequency Division Using Dual Modulus Prescaler” on page 4-8
• “Frequency Division Using Fractional Clock Divider with Accumulator” on page 4-10
• “Frequency Division Using Fractional Clock Divider with DSM” on page 4-12

4

Measuring VCO Phase Noise to Compare with Target
Profile

This example shows how to validate the phase noise profile of a VCO device under test
(DUT) using a VCO Testbench.

Open the model vcoPhaseNoise . The model consists of a VCO block and a VCO
Testbench.

open_system('vcoPhaseNoise.slx')

The voltage sensitivity of the VCO is set to 1.25e6 Hz, and the free running frequency is
2e9 Hz.

The testbencch is set to measure the Phase noise metric of the VCO in the
Measurement option. The Control voltage provided to the input of VCO is 4 V. So,
the VCO operates at 2.5 GHz frequency. Click the Autofill setup parameters button to
automatically calculate the Sampling frequency (Hz), Resolution bandwidth (Hz),
and No. of spectral averages.

Run simulation for 2.4e-3 s, as recommended in the Block Parameters dialog box.
Double click the VCO Testbench block to open the Block Parameters dialog box. Click
on the Plot measurement button.

4 PLL Block Level Examples

4-2

The operating frequency matches the predicted frequency 2.5 GHz. The measured phase
noise profile also matches the target profile.

 Measuring VCO Phase Noise to Compare with Target Profile

4-3

Finding Voltage Sensitivity and Quiescent Frequency of
VCO

This example shows how to find VCO metrics such as voltage sensitivity () and
quiescent frequency or free running frequency ().

Open the model vcoCharacteristics . The model consists of a VCO block and a VCO
Testbench.

open_system('vcoCharacteristics.slx')

The testbencch is set to measure the Kvco and Fo metric of the VCO in Measurement
option. Range of control voltage (V) provided to the input of VCO is set to [1 10].

Run the model for 1.2e-3 s. Double click the VCO Testbench to open the Block
Parameters dialog box. Click on the Plot measurement button.

From the simulation, the free running frequency is 2.5 GHz, and voltage sensitivity is
125 MHz/V.

4 PLL Block Level Examples

4-4

 Finding Voltage Sensitivity and Quiescent Frequency of VCO

4-5

Frequency Division Using Single Modulus Prescaler
Open the model singleModulusPrescaler. The model consists of a Pulse Generator
and a Single Modulus Prescaler block.

open_system('singleModulusPrescaler.slx')

The period of the incoming pulse at the clk in port is 4e-7 s. So, the incoming signal has
a frequency of 2.5 MHz. The div-by value is set at 2.5.

Run the simulation for 2e-6 s. The frequency of the output signal is 1.25 MHz.

4 PLL Block Level Examples

4-6

 Frequency Division Using Single Modulus Prescaler

4-7

Frequency Division Using Dual Modulus Prescaler
Open the model Dual_Modulus_Prescaler_Ex. The model consists of a Pulse
Generator and a Dual Modulus Prescaler block.

open_system('Dual_Modulus_Prescaler_Ex.slx')

The period of the incoming pulse at the clk in port is 1e-7 s. So, the incoming signal has
a frequency of 10 MHz. The Program counter value, Prescaler divider value, and
Swallow counter value are 4, 1, and 1, respectively. The effective clock divider value of
the dual modulus prescaler is 5.

Run the simulation for 1e-4 s. The frequency of the output signal is 2.002 MHz.

4 PLL Block Level Examples

4-8

 Frequency Division Using Dual Modulus Prescaler

4-9

Frequency Division Using Fractional Clock Divider with
Accumulator

Open the model fractionalClockDivider_w_Accumulator. The model consists of a
Pulse Generator and a Fractional Clock Divider with Accumulator block.

open_system('fractionalClockDivider_w_Accumulator.slx')

The period of the incoming pulse at the clk in port is 4e-7 s. So, the incoming signal has
a frequency of 2.5 MHz. The div-by value is set at 2.5.

Run the simulation for 1e-4 s. The frequency of the output signal is 1.002 MHz.

4 PLL Block Level Examples

4-10

 Frequency Division Using Fractional Clock Divider with Accumulator

4-11

Frequency Division Using Fractional Clock Divider with
DSM

Open the model fractionalClockDivider_w_DSM. The model consists of a Pulse
Generator and a Fractional Clock Divider with Accumulator block.

open_system('fractionalClockDivider_w_DSM.slx')

The period of the incoming pulse at the clk in port is 4e-7 s. So, the incoming signal has
a frequency of 2.5 MHz. The div-by value is set at 2.5. The clock divider uses a second
order delta sigma modulator.

Run the simulation for 1e-4 s. The frequency of the output signal is 1.002 MHz.

4 PLL Block Level Examples

4-12

 Frequency Division Using Fractional Clock Divider with DSM

4-13

